forked from sdr/gr-osmosdr
apps: add spectrum sense app ported from gnuradio master
parent
3393647bec
commit
c0b5ece489
|
@ -30,5 +30,6 @@ GR_PYTHON_INSTALL(
|
|||
osmocom_fft
|
||||
osmocom_siggen
|
||||
osmocom_siggen_nogui
|
||||
osmocom_spectrum_sense
|
||||
DESTINATION ${GR_RUNTIME_DIR}
|
||||
)
|
||||
|
|
|
@ -0,0 +1,293 @@
|
|||
#!/usr/bin/env python
|
||||
#
|
||||
# Copyright 2005,2007,2011 Free Software Foundation, Inc.
|
||||
#
|
||||
# This file is part of GNU Radio
|
||||
#
|
||||
# GNU Radio is free software; you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation; either version 3, or (at your option)
|
||||
# any later version.
|
||||
#
|
||||
# GNU Radio is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with GNU Radio; see the file COPYING. If not, write to
|
||||
# the Free Software Foundation, Inc., 51 Franklin Street,
|
||||
# Boston, MA 02110-1301, USA.
|
||||
#
|
||||
|
||||
import osmosdr
|
||||
from gnuradio import gr, eng_notation, window
|
||||
from gnuradio import audio
|
||||
from gnuradio.eng_option import eng_option
|
||||
from optparse import OptionParser
|
||||
import sys
|
||||
import math
|
||||
import struct
|
||||
import threading
|
||||
from datetime import datetime
|
||||
|
||||
sys.stderr.write("Warning: this may have issues on some machines+Python version combinations to seg fault due to the callback in bin_statitics.\n\n")
|
||||
|
||||
class ThreadClass(threading.Thread):
|
||||
def run(self):
|
||||
return
|
||||
|
||||
class tune(gr.feval_dd):
|
||||
"""
|
||||
This class allows C++ code to callback into python.
|
||||
"""
|
||||
def __init__(self, tb):
|
||||
gr.feval_dd.__init__(self)
|
||||
self.tb = tb
|
||||
|
||||
def eval(self, ignore):
|
||||
"""
|
||||
This method is called from gr.bin_statistics_f when it wants
|
||||
to change the center frequency. This method tunes the front
|
||||
end to the new center frequency, and returns the new frequency
|
||||
as its result.
|
||||
"""
|
||||
|
||||
try:
|
||||
# We use this try block so that if something goes wrong
|
||||
# from here down, at least we'll have a prayer of knowing
|
||||
# what went wrong. Without this, you get a very
|
||||
# mysterious:
|
||||
#
|
||||
# terminate called after throwing an instance of
|
||||
# 'Swig::DirectorMethodException' Aborted
|
||||
#
|
||||
# message on stderr. Not exactly helpful ;)
|
||||
|
||||
new_freq = self.tb.set_next_freq()
|
||||
|
||||
# wait until msgq is empty before continuing
|
||||
while(self.tb.msgq.full_p()):
|
||||
#print "msgq full, holding.."
|
||||
time.sleep(0.1)
|
||||
|
||||
return new_freq
|
||||
|
||||
except Exception, e:
|
||||
print "tune: Exception: ", e
|
||||
|
||||
|
||||
class parse_msg(object):
|
||||
def __init__(self, msg):
|
||||
self.center_freq = msg.arg1()
|
||||
self.vlen = int(msg.arg2())
|
||||
assert(msg.length() == self.vlen * gr.sizeof_float)
|
||||
|
||||
# FIXME consider using NumPy array
|
||||
t = msg.to_string()
|
||||
self.raw_data = t
|
||||
self.data = struct.unpack('%df' % (self.vlen,), t)
|
||||
|
||||
|
||||
class my_top_block(gr.top_block):
|
||||
|
||||
def __init__(self):
|
||||
gr.top_block.__init__(self)
|
||||
|
||||
usage = "usage: %prog [options] min_freq max_freq"
|
||||
parser = OptionParser(option_class=eng_option, usage=usage)
|
||||
parser.add_option("-a", "--args", type="string", default="",
|
||||
help="Device args [default=%default]")
|
||||
parser.add_option("-A", "--antenna", type="string", default=None,
|
||||
help="Select antenna where appropriate")
|
||||
parser.add_option("-s", "--samp-rate", type="eng_float", default=None,
|
||||
help="Set sample rate (bandwidth), minimum by default")
|
||||
parser.add_option("-g", "--gain", type="eng_float", default=None,
|
||||
help="Set gain in dB (default is midpoint)")
|
||||
parser.add_option("", "--tune-delay", type="eng_float",
|
||||
default=0.25, metavar="SECS",
|
||||
help="Time to delay (in seconds) after changing frequency [default=%default]")
|
||||
parser.add_option("", "--dwell-delay", type="eng_float",
|
||||
default=0.25, metavar="SECS",
|
||||
help="Time to dwell (in seconds) at a given frequency [default=%default]")
|
||||
parser.add_option("-b", "--channel-bandwidth", type="eng_float",
|
||||
default=6.25e3, metavar="Hz",
|
||||
help="Channel bandwidth of fft bins in Hz [default=%default]")
|
||||
parser.add_option("-q", "--squelch-threshold", type="eng_float",
|
||||
default=None, metavar="dB",
|
||||
help="Squelch threshold in dB [default=%default]")
|
||||
parser.add_option("-F", "--fft-size", type="int", default=None,
|
||||
help="Specify number of FFT bins [default=samp_rate/channel_bw]")
|
||||
parser.add_option("", "--real-time", action="store_true", default=False,
|
||||
help="Attempt to enable real-time scheduling")
|
||||
|
||||
(options, args) = parser.parse_args()
|
||||
if len(args) != 2:
|
||||
parser.print_help()
|
||||
sys.exit(1)
|
||||
|
||||
self.channel_bandwidth = options.channel_bandwidth
|
||||
|
||||
self.min_freq = eng_notation.str_to_num(args[0])
|
||||
self.max_freq = eng_notation.str_to_num(args[1])
|
||||
|
||||
if self.min_freq > self.max_freq:
|
||||
# swap them
|
||||
self.min_freq, self.max_freq = self.max_freq, self.min_freq
|
||||
|
||||
if not options.real_time:
|
||||
realtime = False
|
||||
else:
|
||||
# Attempt to enable realtime scheduling
|
||||
r = gr.enable_realtime_scheduling()
|
||||
if r == gr.RT_OK:
|
||||
realtime = True
|
||||
else:
|
||||
realtime = False
|
||||
print "Note: failed to enable realtime scheduling"
|
||||
|
||||
# build graph
|
||||
self.u = osmosdr.source_c(options.args)
|
||||
|
||||
# Set the antenna
|
||||
if(options.antenna):
|
||||
self.u.set_antenna(options.antenna, 0)
|
||||
|
||||
if options.samp_rate is None:
|
||||
options.samp_rate = self.u.get_sample_rates().start()
|
||||
|
||||
self.u.set_sample_rate(options.samp_rate)
|
||||
self.usrp_rate = usrp_rate = self.u.get_sample_rate()
|
||||
|
||||
if options.fft_size is None:
|
||||
self.fft_size = int(self.usrp_rate/self.channel_bandwidth)
|
||||
else:
|
||||
self.fft_size = options.fft_size
|
||||
|
||||
self.squelch_threshold = options.squelch_threshold
|
||||
|
||||
s2v = gr.stream_to_vector(gr.sizeof_gr_complex, self.fft_size)
|
||||
|
||||
mywindow = window.blackmanharris(self.fft_size)
|
||||
fft = gr.fft_vcc(self.fft_size, True, mywindow, True)
|
||||
power = 0
|
||||
for tap in mywindow:
|
||||
power += tap*tap
|
||||
|
||||
c2mag = gr.complex_to_mag_squared(self.fft_size)
|
||||
|
||||
# FIXME the log10 primitive is dog slow
|
||||
#log = gr.nlog10_ff(10, self.fft_size,
|
||||
# -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size))
|
||||
|
||||
# Set the freq_step to 75% of the actual data throughput.
|
||||
# This allows us to discard the bins on both ends of the spectrum.
|
||||
|
||||
self.freq_step = self.nearest_freq((0.75 * self.usrp_rate), self.channel_bandwidth)
|
||||
self.min_center_freq = self.min_freq + (self.freq_step/2)
|
||||
nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step)
|
||||
self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step)
|
||||
|
||||
self.next_freq = self.min_center_freq
|
||||
|
||||
tune_delay = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size))) # in fft_frames
|
||||
dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames
|
||||
|
||||
self.msgq = gr.msg_queue(1)
|
||||
self._tune_callback = tune(self) # hang on to this to keep it from being GC'd
|
||||
stats = gr.bin_statistics_f(self.fft_size, self.msgq,
|
||||
self._tune_callback, tune_delay,
|
||||
dwell_delay)
|
||||
|
||||
# FIXME leave out the log10 until we speed it up
|
||||
#self.connect(self.u, s2v, fft, c2mag, log, stats)
|
||||
self.connect(self.u, s2v, fft, c2mag, stats)
|
||||
|
||||
if options.gain is None:
|
||||
# if no gain was specified, use the mid-point in dB
|
||||
g = self.u.get_gain_range()
|
||||
options.gain = float(g.start()+g.stop())/2.0
|
||||
|
||||
self.set_gain(options.gain)
|
||||
print "gain =", options.gain
|
||||
|
||||
def set_next_freq(self):
|
||||
target_freq = self.next_freq
|
||||
self.next_freq = self.next_freq + self.freq_step
|
||||
if self.next_freq >= self.max_center_freq:
|
||||
self.next_freq = self.min_center_freq
|
||||
|
||||
if not self.set_freq(target_freq):
|
||||
print "Failed to set frequency to", target_freq
|
||||
sys.exit(1)
|
||||
|
||||
return target_freq
|
||||
|
||||
|
||||
def set_freq(self, target_freq):
|
||||
"""
|
||||
Set the center frequency we're interested in.
|
||||
|
||||
@param target_freq: frequency in Hz
|
||||
@rypte: bool
|
||||
"""
|
||||
|
||||
r = self.u.set_center_freq(target_freq)
|
||||
if r:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def set_gain(self, gain):
|
||||
self.u.set_gain(gain)
|
||||
|
||||
def nearest_freq(self, freq, channel_bandwidth):
|
||||
freq = round(freq / channel_bandwidth, 0) * channel_bandwidth
|
||||
return freq
|
||||
|
||||
def main_loop(tb):
|
||||
|
||||
def bin_freq(i_bin, center_freq):
|
||||
#hz_per_bin = tb.usrp_rate / tb.fft_size
|
||||
freq = center_freq - (tb.usrp_rate / 2) + (tb.channel_bandwidth * i_bin)
|
||||
#print "freq original:",freq
|
||||
#freq = nearest_freq(freq, tb.channel_bandwidth)
|
||||
#print "freq rounded:",freq
|
||||
return freq
|
||||
|
||||
bin_start = int(tb.fft_size * ((1 - 0.75) / 2))
|
||||
bin_stop = int(tb.fft_size - bin_start)
|
||||
|
||||
while 1:
|
||||
|
||||
# Get the next message sent from the C++ code (blocking call).
|
||||
# It contains the center frequency and the mag squared of the fft
|
||||
m = parse_msg(tb.msgq.delete_head())
|
||||
|
||||
# m.center_freq is the center frequency at the time of capture
|
||||
# m.data are the mag_squared of the fft output
|
||||
# m.raw_data is a string that contains the binary floats.
|
||||
# You could write this as binary to a file.
|
||||
|
||||
for i_bin in range(bin_start, bin_stop):
|
||||
|
||||
center_freq = m.center_freq
|
||||
freq = bin_freq(i_bin, center_freq)
|
||||
#noise_floor_db = -174 + 10*math.log10(tb.channel_bandwidth)
|
||||
noise_floor_db = 10*math.log10(min(m.data)/tb.usrp_rate)
|
||||
power_db = 10*math.log10(m.data[i_bin]/tb.usrp_rate) - noise_floor_db
|
||||
|
||||
if (power_db > tb.squelch_threshold) and (freq >= tb.min_freq) and (freq <= tb.max_freq):
|
||||
print datetime.now(), "center_freq", center_freq, "freq", freq, "power_db", power_db, "noise_floor_db", noise_floor_db
|
||||
|
||||
if __name__ == '__main__':
|
||||
t = ThreadClass()
|
||||
t.start()
|
||||
|
||||
tb = my_top_block()
|
||||
try:
|
||||
tb.start()
|
||||
main_loop(tb)
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
Loading…
Reference in New Issue